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1 INTRODUCTION 

1.1 Background 

Deforestation, forest degradation and land use change (LUC) are the main sources 

of carbon emissions from developing countries, accounting for 15–20% of global 

carbon emissions (Angelsen, 2008, UNFCCC, 2009, Kanninen et al., 2010). The 

increase in the concentrations of carbondioxide (CO2) and other greenhouse gases 

(GHG) in the atmosphere are the main drivers of the changes in the Earth’s 

environmental conditions and global climate (IPCC, 1990). 

 

Since the early 1990s, there is increasing effort from the international community to 

combat global climate change through mitigation and adaptation. Mitigation actions 

are those actions that are aimed at a reduction of the carbondioxide and other GHG 

concentrations in the atmosphere, whereas adaptation efforts are those actions that 

are geared towards the reduction of the vulnerability or the enhancement of the 

resilience of the environment to cope with future global climatic conditions 

(Kanninen, 2012). 

 

The signing of the United Nations Framework Convention on Climate Change 

(UNFCCC) in Rio de Janeiro in 1992 and its subsequent implementation 

instruments have been widely observed and recognized as important milestones in 

the commitment of the international community towards combating global climate 

change. The UNFCCC is the leading international body in addressing global 

climate change and the Conference of the parties (COP) is the supreme decision 

making body of the UNFCCC and is charged with the responsibility of coordinating 

the development of REDD+ (Reduced Emissions due to Deforestation and Forest 

Degradation and the role of Sustainable Management, Conservation, and the 

enhancement of carbon stocks) policy and supervising its overall development. This 

organ is also responsible for the final policy formulation and implementation 

guidelines of the REDD+ mechanism (Siwe et al., 2011). Since its creation, the 

COP has held 18 meetings with the most recent in Doha, Qatar, from 26 November 

to 7 December 2012 (UNFCCC, 2013) home page at: 

http://unfccc.int/meetings/items/6237.php. During COP11 in Montreal in 2005, the 
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governments of Papua New Guinea and Costa Rica, supported by Latin American 

and African countries submitted a proposal for the consideration of REDD in 

developing countries for the post-Kyoto protocol reporting (UNFCCC, 2005, Siwe 

et al., 2011, Kanninen, 2012). Sustainable forest management, conservation and the 

enhancement of carbon stocks were subsequently considered as eligible activities 

under the REDD mechanism and in COP13 in Bali, the term REDD+ was adopted. 

The crucial role of reducing emissions from deforestation and forest degradation 

and the need to enhance the role of forests in the removal of greenhouse gases from 

the atmosphere, was recognized in COP15 in Copenhagen in December 2009, 

which called for the immediate establishment of the REDD+ mechanism (Reduced 

Emissions due to Deforestation and Forest Degradation and the role of Sustainable 

Management, Conservation, and the enhancement of carbon stocks) (UNFCCC, 

2005, Angelsen, 2008, Kanninen et al., 2010).  COP 16 requested countries 

engaged in the REDD+ process to elaborate national strategies or action plans, 

comprising a robust and transparent national forest monitoring system with sub 

national level monitoring and reporting, national reference emission levels or 

combinations of sub national forest reference levels in accordance with the national 

circumstance and capability, information on how safeguards are being addressed as 

interim measures while transitioning to a national forest reference emission level 

(Siwe et al., 2011, UNFCCC, 2011).  

 

The current international REDD+ mechanism (a global climate change mitigation 

initiative) , sustainable forest management planning, conservation planning, 

economic development,  improvement of  local and global ecological models 

require the efficient assessment of the causes of deforestation and forest 

degradation (Carlos Souza et al., 2002, Souza and Roberts, 2005). The effective 

implementation of any climate change mitigation initiative in developing countries 

requires that there should be a constant assessment and monitoring of deforestation, 

forest degradation, and land use change. This entails an understanding of: (i) the 

aerial extent of deforestation and forest degradation, (ii) the proportion of forest 

biomass loss in deforestation and forest degradation, (iii) the location where 

deforestation or forest degradation is occurring, and (iv) the carbon content of each 

forest type in metric tons of carbon per hectare (Kanninen et al., 2007, Ramankutty 

et al., 2007, Olander et al., 2008, Baldauf et al., 2009).  
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Deforestation is the direct, human-induced conversion of forested land to non-

forested land .i.e. a permanent conversion of forest land to other land cover or land 

use such as cropland, grassland, wetlands or settlements; and forest degradation is 

the direct, human-induced, long-term loss (persisting for a known period of time in 

years) or at least a known percentage of forest carbon stocks [and forest values] 

from a certain time reference and not qualifying as deforestation (IPCC, 2003, 

GOFC-GOLD, 2011). The IPCC definition of forest degradation emphasizes a 

decrease in carbon stocks of “forest land remaining forest land” (GOFC-GOLD, 

2011).  However, forest degradation also applies to a reduction of forest 

productivity (products and services), genes, tree vigour and quality, species 

composition, soils, water, nutrients and the landscape. “As widely used by forest 

scientists, forest degradation implies a long-term loss of productivity that is difficult 

to assess, especially when applied to soils, water, and the landscape” (Siwe et al., 

2011). 

 

In order to support the implementation of the REDD+ mechanism, the 

Intergovernmental Panel on Climate Change (IPCC) has provided guidelines to 

assist countries in developing carbon assessment methodologies. The guidelines are 

organized into three “Tiers” each providing successively increased level of 

accuracy. The tier I approach is the most general based on nationwide estimates of 

forest cover and generic forest carbon density value, tier II and III provide 

increased detail on carbon stock and emissions at regional and national level using 

a combination of plot inventory, satellite mapping and carbon modeling 

approaches. The achievement of tier III level of accuracy further requires that both 

above-ground and below-ground dead and live carbon stocks are estimated and 

modeled (Gregory, 2009). 

 

Deforestation, forest degradation and land use change as sources of emissions in the 

tropics are caused by several factors, which are either direct or indirect factors. The 

direct causes of deforestation and forest degradation widely cited in literature are: 

expansion of agricultural land (including bioenergy production), growth of human 

settlements, selective timber logging, forest fires, fuel wood and charcoal collection 

and mining activities, while indirect causes of deforestation and forest degradation 
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have been mostly linked to: increase in human population, change in human 

consumption patterns, commodity price increase, political and governance policies 

and practices, technological advancements, cultural factors and many others.  

 

Methods for monitoring deforestation and LUC based on optical remote sensing 

technology have been relatively well developed (LAMBIN, 1999, GOFC-GOLD, 

2011). However, research efforts are still ongoing to develop an efficient method 

for the assessment of forest degradation. Methodological difficulties in assessing 

forest degradation from remote sensing (widely believed to be cost effective for 

large scale assessments) stem from the fact that difference in reflectance between 

forest and degraded forest are more subtle than in the case of deforestation. The 

degraded forest is a complex mix of different land cover types (vegetation, dead 

trees, soil, shade) and the spectral signature of the degradation changes quickly (as 

a result of forest re-growth), i.e. in less than 2 years, making it technically 

challenging to assess forest degradation through optical remote sensing methods 

(Carlos Souza et al., 2002, Baldauf et al., 2009, Siwe et al., 2011, GOFC-GOLD, 

2011). 

 

Current literature indicates some advances made in the development of methods for 

mapping forest degradation developed on the basis of medium spatial resolution 

sensors such as Landsat, ASTER and SPOT and very high resolution sensors such 

as Ikonos or Quickbird, as well as aerial digital images acquired with videography 

(Carlos Souza et al., 2002, Souza and Roberts, 2005, Gregory, 2009, Siwe et al., 

2011). A majority of the studies, which form the basis for these methods were 

carried out in the Amazonian tropical rainforest. Very few studies have so far been 

conducted in the African tropical rainforest conditions; hence the suitability and the 

applicability of these methods in the African tropical rainforest ecosystem have 

been insufficiently investigated. Considering the fact that the factors causing forest 

degradation may vary or may occur at different intensities in different 

environments, there is a need for the proper investigation of the applicability of the 

existing methods as well as the need to develop methods for assessing forest 

degradation which are directly based on the African rainforest factors of forest 

degradation. 
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The REDD+ pilot project conducted in Cameroon (Siwe et al., 2011) tested a 

method for mapping forest degradation caused by selective logging based on 

Spectral Mixing Analysis (SMA) and Contextual Classification Algorithm (CCA) 

techniques. Though this study concluded that remote sensing can be used to track 

forest degradation due to selective logging, it however observed that “there is still a 

gap in both research and the design of operational methods for EO-based 

assessment of forest degradation in COMIFAC countries,” and stressed the need for 

this methodological development to be addressed urgently. The same study further 

stressed the importance of developing a monitoring system that is robust using 

remote sensing technology and field measurements to track and quantify carbon 

fluxes due to forest degradation.   

 

Furthermore, based on the economic situation in most developing countries, the 

methods based on high resolution satellite images such as Ikonos, Quickbird and 

aerial digital images acquired with videography are expensive and unlikely to be at 

the reach of a majority of the stakeholders in the forestry business as well as 

possible REDD+ structures in Central African countries. Persistent cloud cover is 

another hindrance to the full exploitation of the potential of optical remotely sensed 

data over the Central African rainforest ecosystem. All of these factors call for a 

continuous quest in the search of methodologies for a precise and accurate 

assessment of forest degradation in the Central African rainforest.   

1.2 Research Objectives 

From this background, the goal of this study is to quantify above-ground biomass 

affected by selective logging and to further develop models based on field 

measured variables and variables derived from moderate resolution free remote 

sensing datasets for predicting above-ground biomass in a selectively logged forest 

concession, with the aim of establishing proxies for the assessment of forest 

degradation caused by selective logging and for the quantification of the resulting 

carbon emissions. 

 

The main objective of this study was to use above-ground biomass as an indicator 

to assess forest degradation caused by selective logging by quantifying the above-

ground biomass affected in a selectively logged forest concession and also to 
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investigate and propose proxies for predicting forest degradation (changes in above-

ground biomass levels) caused by selective logging. 

The specific objectives of the study were: (i) to quantify above-ground biomass 

affected by selective logging activities in the study site, (ii) to investigate whether 

there is a relationship between the density of logging roads, the density of log yards 

and the quantity of above-ground biomass logged, (iii) to investigate whether there 

is a relationship between red reflectance, near infrared reflectance (NIR), middle 

infrared reflectance (MIR), normalized difference vegetation index (NDVI), and 

enhanced vegetation index (EVI) derived from MODIS 250 m products and above-

ground biomass logged, and (iv) to develop a model for predicting above-ground 

biomass logged in selectively logged forest concessions. 

 

It is hoped that the results from the study will go to contribute to ongoing efforts in 

the setting up and the implementation of the climate change mitigation initiative 

(REDD+) in Cameroon by providing a method that would probably contribute in 

the assessment of carbon emissions in selectively logged forest concessions. In 

addition, the study will contribute to the sustainable management of the tropical 

rainforest of Cameroon by providing useful information on which forest 

management decisions could be based- both at the level of field practices as well as 

policy development level. The main research questions were: 

 What quantity of above–ground biomass is affected by the following 

selective logging activities? (i) Logged trees, (ii) Construction of logging 

roads, (iii) Construction of log yards 

 Is there a relationship between density of logging roads, the density of log 

yards, and above-ground biomass logged in selectively logged forest 

concessions? 

 Is there a relationship between red reflectance, near infrared reflectance 

(NIR), middle infrared reflectance (MIR), normalized difference vegetation 

index (NDVI), and enhanced vegetation index (EVI) derived from MODIS 

250 m products and above-ground biomass logged? 

The hypothesis was that: 

 There is high dependency of selective logging activities on road network, 

which in turn creates a significant impact on above-ground biomass. 
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 Changes in above-ground biomass significantly correlate with i) Red 

reflectance, ii) Near Infrared (NIR), iii) middle infrared reflectance (MIR), 

iv) Normalized Difference Vegetation Index (NDVI), v) Enhanced 

Vegetation Index (EVI) derived from MODIS 250 m resolution products. 

2 OVERVIEW OF FOREST MANAGEMENT AND SELECTIVE 

LOGGING IN CAMEROON 

2.1 Forest management 

The republic of Cameroon has a total surface area of 475000 Km2 and the surface 

area of the tropical rainforest of Cameroon is estimated to be between 19.5 million and 

22 million hectares (WRI, 2005, CBFP, 2006, WRI, 2007, Guiseppe et al., 2009, 

MINFOF, 2010, WRI, 2012).  

 

According to the 1994 forestry law of Cameroon, the national forest estate is zoned 

into the permanent forest estate and the non-permanent forest estate. By definition, 

the permanent forest estate represents forest land that is zoned for production and 

conservation purposes and cannot be converted to any other land use.  The 

permanent forest estate is comprised of the state forests and the council forests. The 

non-permanent forest estate by definition refers to forest land that is susceptible to 

being converted to other land uses than forestry. This is forest land located near 

villages and settlements and includes communal, community and private forests 

estates (see figure 1 for the detailed forest zoning system in Cameroon). The 

permanent forest estate is anticipated to cover at least 30% of the national territory 

and should represent the country’s ecological diversities (vegetation types) on the 

completion of the land use zoning plan (GoC, 1994, WRI, 2005, WRI, 2007, 

Guiseppe et al., 2009, WRI, 2012).  
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Figure 1: The forest zoning plan of Cameroon from WRI (2005) 

Forest Management Units (FMUs) are production forest areas that are zoned for 

industrial wood production. By regulation, the surface area of a single FMU should 

never exceed 200.000 hectares. Wood production by local communities and 

councils is carried out within community and council managed forests respectively. 

Other production forest units called sales of standing volume (SSV) or ‘ventes de 

coupe’ (not exceeding 2500 ha) are also opened for timber production purposes and 

some are prioritized to national companies for a maximum three years logging 

period. In addition to these, there are other special permits granting individual 

access to forest resource exploitation, which include: (i) forest products exploitation 

permits, (ii) personal logging permits, (iii) timber removal permits, and (iv) timber 

recuperation permits (GoC, 1994, WRI, 2005, WRI, 2007, De Wasseige et al., 

2009, WRI, 2012).  

2.2 Selective logging 

Wood harvesting in Cameroon, especially in production forests is carried out 

through a selective logging process. Selective logging has been described as a 

harvesting system practiced mainly in native forests and in hardwood plantations 

where a few desired and commercially valuable trees species are harvested 

following a predefined criteria as opposed to clear cutting where a whole forest 

compartment is completely clear-cut in the harvesting process. Selective harvesting 

is said to remove only a portion of the standing trees leaving a viable forest for 

natural regeneration and growth. The natural spatial configuration, stand structural 

elements and growth stages of the native forest are maintained by retaining at least 
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50 per cent basal area (which translates to about 50 per cent forest canopy cover) 

including habitat trees and watercourse and steep area protection zones (QsG, 2011) 

. 

 

In Cameroon, the allocation of FMUs for selective logging is done through a 

transparent competitive public auction process where the government selects 

companies that have demonstrated adequate financial and technical capacities to 

carry out forest exploitation as well as forest management activities in the allocated 

forest concessions. Once attributed, companies secure long-term use rights for 15 

years renewable (GoC, 1994, Guiseppe et al., 2009). Selective logging in FMUs is 

planned and implemented according to a pre-established management plan- an 

obligation imposed by the 1994 forestry law of Cameroon. The management plan 

defines the species to be harvested, the minimum exploitable diameter for each 

species which guarantees that at least 50% of the harvested tree species is able to 

reconstitute during the next rotation cycle, the quantity of wood to be harvested in 

terms of number of trees and volumes, the logging sequence for a 30 year rotation 

cycle and many other forest management obligations. 

 

 

 

 

 

 

 

 

 

 

 

 

Photos by Shu, Sufo & Theo, July 2012 

Figure 2: Examples of selective logging activities in South East Cameroon 

Above-ground biomass is the carbon pool that is most affected by selective logging 

activities and is also one of the six carbon pools (see figure 3 below) that has been 
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recommended for investigation in the IPCC 2006 guidelines. The activities which 

affect above-ground biomass during selective logging include: (i) the biomass that is 

taken out through the trees that are harvested (ii) the construction of logging roads 

and log yards and (iii) residual damage caused to the surrounding vegetation by tree 

fall and machinery maneuvering (Vincent Medjibe et al., 2011, Durrieu de Madron 

et al., 2011).  

 

 

 

 

 

 

 

 

Figure 3: Illustration of above-ground biomass as component of carbon pool from 

Simon Eggleston & Nalin Srivastava (2008), AFOLU in the IPCC 2006 Guidelines. 
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3 THE STUDY AREA 

3.1 Location 

The study was conducted in the East Region of the Republic of Cameroon, in AAC 

3-4 of FMU 10-007. FMU 10-007 is a forest management unit which covers a total 

surface area of 122 294 ha and was allocated for sustainable management to the 

forestry company SEBC-an affiliate of VICWOOD THANRY in 1998.  AAC 3-4 

covers a surface area of 4400 ha out of the 122 294 ha total surface area of FMU 

10-007. 

  

Geographically, FMU10-007 lies between latitudes 2°40’ and 3°09’N and longitude 

15°20’ and 15°46’E.  It is located in the Boumba and Ngoko division of the East 

region of Cameroon.  Its boundaries cut across two administrative districts: 

Yokadouma and Moloundou. Its logging operations are guided by the prescriptions 

of its management plan that was elaborated in 2002 by the concession holder SEBC 

and approved by the then Ministry of Environment and Forestry. AAC 3-4 was 

selectively logged between July and December 2011 (personal communication 

from VICWOOD THANRY sources). 

 

 
Figure 4: The location of the study site 
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3.2 Biophysical factors  

3.2.1 Vegetation and wildlife 

The vegetation type in the study site is described as semi-deciduous Guinea-

congolaise dense tropical rainforest and is characteristically a mixture of evergreen 

forest and semi-deciduous forest which is stratified into several layers. In this forest 

type, trees can grow as tall as 70m and as big as 150 cm in diameter or more. 

Available literature indicates that the species richness and diversity in this area is 

very high; about 1500 different plant species grow in the area. Also, isolated 

pockets of swamp forest dominated by palm trees and Raphia palms bushes are 

encountered along the River Lokomo which forms the western boundary of the 

forest concession. The tree species present are mostly hardwood evergreens species 

and the dominant ones include: Alstonia boonei,  Celtis zenkerii, Entandrophragma 

angolense, Entandrophragma candollei, Entandrophragma cylindricum, 

Entandrophragma utile, Eribroma oblongum, Erythropleum ivorense, Guarea spp, 

Guibourtia ehié,  Khaya sp, Mansonia altissima, Milicia excelsa, Pericopsis elata, 

Pterocarpus soyauxii, Swartzia fistuloides, Triplochyton scleroxylon (SEBC, 2002). 

 

Although there are no specific studies on the wildlife in FMU 10-007, literature on 

the East Region of Cameroon indicates that this Region is very important in terms 

of its diversity and abundance of wildlife resources, testified by the creation of 

many protected areas in this Region. The Region contains a variety of large 

mammals, small mammals, and avifauna. Large mammal populations include 

threatened species listed on the IUCN Red list of species, such as elephants 

(Loxodonta africana cyclotis), chimpanzees (Pan troglotydes), gorillas (Gorilla 

gorilla), buffalos (Syncerus caffer nanus), giant pangolins (Manis gigantea) 

antelopes (Panthera pardus). The population of small mammals is dominated by 

numerous species of monkeys and rodents, including: Cercopithecus spp, 

Antherurus africanus, Cephalobus spp, Tragelaphus spekki and Colobus guereza. 

The Avifauna population is dominated by dense forest species, including globally 

threatened species such as Bradypterus grandis, Lobotos oriolinus, Pteronetta 

hartlaubii and many other bird species (SEBC, 2002, SEFAC, 2005).  
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The prominent protected areas located in the zone of FMU 10-007 are the Dja 

biosphere reserve (one of UNESCO’ s natural heritage sites in Cameroon),  Lobéké 

national park, Boumba-Bek national park,  Nki national park, and Deng Deng 

national park.  

3.2.2 Climate 

The climate is described as wet equatorial climate (also known as a Guinea type 

climate), meaning that it experiences high temperatures (24˚C on average). The 

climate is greatly influenced by the monsoon and Harmattan winds resulting in four 

characteristic seasons: a long dry season from December to May, a light wet season 

from May to June, a short dry season from July to October, and a heavy wet season 

from October to November. Humidity and cloud cover are relatively high, and 

precipitation averages 1500–2000 mm per year (SEBC, 2002, SEFAC, 2005). 

3.2.3 Hydrography 

The study site is described to be located within the Sangha drainage basin. The 

main rivers in this region are: Lokomo (which forms the natural boundary of FMU 

10-007 to the west), Monguele, Lokou, Loponji, Boumba and Ngoko rivers (SEBC, 

2002) . 

3.2.4 Geology and soils 

The geological rock basement is cratonic and dates as far back as the Precambrian 

and Cambrian periods; composed mainly of ancient migmatites and mica schist. 

Alluvial deposits dating to the quaternary period are located within valleys and 

other depressions. The common soil type is ferralsols (ferrallitic red soils). These 

ferrallitic soils are overlaid by a deep top humus layer that results from the 

decomposition of vegetal material. Hydromorphic soils, such as gleysols, fluvisols, 

and peat, are common along river banks (SEBC, 2002, SEFAC, 2005). 

3.2.5 Relief 

The land consists largely of monotonous, gently-undulating hills. In general, the 

East region of Cameroon lies on the South Cameroon plateau that forms the south-

eastern half of the country. The elevation range in this region is between 200 and 

1000 meters above sea level (Heckelsweiller et al., 2001). 
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3.3 Population  

The estimate of the total local population in the vicinity of FMU 10-007 is about 

7300 inhabitants, living in the following villages: Momboué, Ngolla 125, Ngolla 

120, Tembé and Mikel. The ethnic groups in these villages are also described as 

being diverse with Baka, Bangando and Mbimo pygmies constituting the main 

indigenous groups. Alongside the indigenous communities are other communities 

such as Kounabembe and Mvong-Mvong communities which are inhabited by 

settlers believed to have come from other countries notably: Senegal, Mali, 

Mauritania, and Nigeria. However, the current experience in the area shows that 

there is increasing cohabitation of the Baka pygmies with people from other Bantu 

tribes (SEBC, 2002).  

3.4 Local activities 

The local populations depend on the forest for their livelihood, especially for food, 

medicine, handicraft and energy. They harvest various seeds, fruits, leaves, and 

barks, which are used either as ingredients, thickeners, or as vegetables. Baka 

pygmies still practice seasonal migration into the forest for gathering and 

harvesting fruits (based on the fruiting periods of some forest trees) or for hunting 

purposes as well as for visiting sacred sites for spiritual rites. 

 

Fishing and hunting are important local activities. The Bangando, Mbimo, and 

Baka pygmies are traditional hunters. “Bushmeat” is the principal source of animal 

proteins and local income. In commercial hunting, the wildlife “bushmeat” is sold 

either locally or through well-organized channels of middle men to nearby towns 

and cities. Public transporters are highly involved in “bushmeat” business and are 

the main channels of “bushmeat” movement from local areas to urban centres. It is 

estimated that a household makes an average monthly income of 50000 fcfa (about 

80€) from hunting activities (SEBC, 2002, Makazi, 2004, SEFAC, 2005).   

 

The local populations also carry out farming activities, mainly for subsistence and 

only the surplus is sold. Shifting cultivation and mixed cropping are the local 

farming practices. The crops fields are generally small in size (less than 0.5 ha) on 

average. The common food crops that are grown include: cassava, cocoyams, 
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plantains, groundnuts, maize, and sugar cane. Also, coffee, cocoa and plantains are 

grown as cash crops (SEBC, 2002).  

 

Indian bamboos and rattans are used for local handicrafts mainly: baskets, chairs, 

beds and shelves. Local houses are thatch and mud houses constructed from local 

materials: mats made out of Raphia palms leaves for roofing and poles from 

different tree species for erecting the walls of houses. The main building material 

for Baka pygmies are tree barks and maranthaceae leaves.  

 

A)  Local Bantu house                                     B) Local Baka pygmy house  
Sources: http://en.wikipedia.org/wiki/File:Njem_house_in_Cameroon.jpg and 

http://fortheinterim.com/wp-content/uploads/2011/03/pygmies2.jpg.  

Figure 5: Examples of local houses in South East Cameroon 

3.5 Industrial activities  

Commercial timber logging, mining, and safari hunting are the main industrial 

activities in this region. The forestry industry is the oldest industrial activity and has 

been mostly dominated by European and other multinational companies. However, 

since 1994 when the forestry policy of Cameroon introduced the notion of council 

and community forests, local communities and councils are also increasingly 

involved in the management of forest for timber production purposes.   

Safari hunting which is also a common activity in the East region is regulated by 

the Cameroonian forestry law and all its application texts that set the modalities for 

carrying out this activity. The hunting zone ‘ZIC’ n°28 which covers a surface area 
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of 82406 ha and was allocated to NGONG SAFARI, partly overlaps with the 

southern portion of FMU 10-007 (SEBC, 2002). 

The mining sector in Cameroon is currently growing in importance as a major 

economic activity. Several mineral exploration projects are underway in the East 

Region where large deposits of gold, cobalt, iron and aluminium have been 

identified. Exploration and exploitation permits are also currently being allocated to 

different mining companies.  Through the Interactive Forestry Atlas of Cameroon, 

it has become obvious that a majority of the mining permits in the East Region are 

either overlapping with production forest concessions or with protected areas. This 

situation is seemingly going to be a potential source of conflict between the main 

stakeholders: mining permit holders and industrial forestry companies and or 

conservation organizations.  

The FMU 10-007 is surrounded by other production forests namely: FMU 10-008 

and FMU 10-009 that belong to the Group SEFAC/SEBAC, FMU 10-005 that 

belongs to STBK company, FMU 10-011 and FMU 10-001-2-3-4, belonging to 

SAB and CFC respectively, which are affiliates of VICWOOD THANRY (SEBC, 

2002, WRI, 2005, WRI, 2007, WRI, 2012).  

 

The forest exploitation activities and the other industrial activities offer substantial 

employment opportunities to the local populations, as well as to people from 

outside the region. It has been observed that the forestry activities and other 

industrial activities in the East Region have attracted migrants from other parts of 

Cameroon who form a great proportion of the work force in the different 

companies. VICWOOD Thanry sources indicate that about 377 people are currently 

employed at the site in Lokomo. From this number, about 65 people are working in 

the sawmill which has a monthly production capacity of 10000 m3 and the 

remaining 312 people work in other forestry operations. In addition to the sawmill 

belonging to VICWOOD THANRY, other sawmills in the zone are 

SEFAC/SEBAC in libongo, SIBAF in Kika, CFE in Yokadouma, CIBC in Gribi 

and CFE in Yokadouma. These sawmill and the related forestry activities provide 

great employment possibilities; thus contributing to the economic stability and a 

general improvement in the standard of living of the people. The workers of the 
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various companies live in base camps constructed by the companies. The base 

camps have grown into highly dense settlements booming with a variety of 

privately owned ‘petit-trade’ businesses as well as other social amenities that are 

either provided by the company or by private owners’ resident within the base 

camps.  

 

 

 

 

 

 

A) General view of the base camp                                          (B) A side view of one of the sawmill facilities 

Photo by Shu, July 2012 

Figure 6: A general view of SEBC-VICWOOD THANRY base camp and sawmill 

at Lokomo 

3.6 Conservation activities 

The government of Cameroon created a Technical Operation Unit in the South East 

of Cameroon in 1999; known by its French acronym UTO Sud-Est. It has a total 

surface area of 2300000 ha and its objective is to ensure the integrated management 

of the natural resources of this zone. This UTO covers production forests, national 

parks, Safari and community-managed wildlife hunting zones. The activities of 

UTO Sud-Est are supported by WWF, through its Jengi project, and the GIZ 

(formerly GTZ) through its project for the protection of natural forests in 

Cameroon. These international organizations are also working to protect the rich 

wildlife resources of the East region, which is currently reported to be under the 

threat of extinction due to deforestation and the “bushmeat” trade (Heckelsweiller 

et al., 2001, SEBC, 2002, Makazi, 2004, SEFAC, 2005, WWF, 2013). 

3.7 Infrastructure and communication facilities 

Despite the many industrial scale activities in the East region, the road 

infrastructure is generally seen as being underdeveloped. A majority of the roads in 

the region are loose earth surface roads which though are used throughout the year, 
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their practicability during the rainy season is sometimes near impossible. Forest 

roads (roads constructed and maintained by forestry companies) are relatively more 

practicable all year round as a result of constant maintenance compared to the state 

owned roads. 

  

FMU 10-007 is connected by an 18 km long forest road to the transnational n° 10 

which links the East Regional headquarters Bertoua to the northern part of the 

Republic of Congo, passing through Yokadouma and Moloundou. In addition to 

these, a well maintained network of forest roads exist within the forest concession 

and serve as the main channels for the evacuation of harvested tree logs to the 

sawmill.  Timber products from the sawmill are evacuated to the export port in 

Douala mainly by road, and a limited quantity by train from Belabo railway station. 

 

Telephone and internet services (operated by the principal providers: MTN 

Cameroon and ORANGE Cameroon) are now available in the Base camp of SEBC-

VICWOOD THANRY at Lokomo. These facilities have greatly improved 

communication on-site as well as with the external world.  
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4 MATERIALS AND METHODS 

4.1 Materials  

The data used in this study came from two principal sources: field collected data 

and remote sensing data.  

4.1.1 Field data 

The data which was collected in the field include: forest exploitation inventory data 

which was used for calculating above-ground biomass of the commercial trees 

species, the location and area of logging roads and log yards which were used to 

assess the quantity of above-ground biomass affected by the former and the later.  

 

The forest exploitation inventory data was obtained from the Forest Management 

Department of VICWOOD THANRY. This data comprised two phases of 

inventory data: an initial inventory of all principal commercial tree species at 

exploitable diameter found in AAC 3-4 and a second inventory comprising only the 

trees that were effectively logged in AAC 3-4 in 2011. The minimum exploitable 

diameter is different for different tree species in Cameroon. The average exploitable 

diameter for the different tree species in this study (based on the forest exploitation 

inventory data) are summarized on table 4 below. According to VICWOOD 

THANRY sources, the initial inventory was carried out using the services of a 

consultant and the final inventory was conducted by an internally constituted team. 

Both datasets were collected through a systematic inventory of 61 counting blocks 

of 1000 m x 1000 m. The blocks were further divided into 250 m x 1000 m sub 

plots or counting units. However, due to the irregular form of the study site, some 

peripheral blocks did not have the standard dimensions, resulting in blocks which 

had sizes that were smaller than the standard block size. Therefore, the counting 

block sizes varied from 1-100 ha (See figure 8 below).  The initial inventory was 

carried out in December 2010 while the final inventory was conducted between 

January and July 2011, (VICWOOD THANRY, personal communications). The 

data comprised of a systematic recording of all the commercial tree species based 

on the minimum exploitable diameter of each species. The information recorded on 

the field data sheets included the DBH of the trees, the tree identification 

information (mostly common names of the trees and an assigned inventory code), 
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and the bole quality class. The relative location of the individual trees were 

positioned on a field sketch maps ‘les croquis’ on which other biophysical 

characteristics of the forest  were also indicated. 

 

The logging roads and log yards were measured during field work which was 

conducted in June and July 2012. The field measurements were carried out by a 

team of three persons; comprising of a team leader and two assistants. All the roads 

were systematically tracked using a handheld Garmin 76 GPS Map CSX and 

Arcpad Mobile GIS units. The width of each road was measured and the road type 

identified and recorded on field data collection sheets. The perimeters of the log 

yards were also systematically tracked and each log yard identified with a code as 

used by the company.  

4.1.2 Remote sensing data 

The remote sensing datasets were used for correlation and regression analysis and 

included: red band reflectance, near infrared, middle infrared, normalized 

difference vegetation index, and enhanced vegetation index derived from 16 day 

MODIS 250 m composites.  

The MODIS satellites acquire data daily, but cloud free observations are 

composited for 8, 16 and 32 days periods. The data sets were obtained through the 

online Data Pool at the NASA Land Processes Distributed Active Archive Center 

(LP DAAC) at (https://lpdaac.usgs.gov/get_data). Data for three consecutive 16 day 

composites were selected for the study periods due to observed variability in the 

datasets. The data was acquired for the periods: December 2010-January 211 

(considered as 2010 period) and December 2011-January 2012 (considered as 2011 

period). These periods correspond to the condition of the forest before selective 

logging and after selective logging, respectively.  MODIS data is delivered in single 

band Geotiff file format that are projected in the geographic Latitude/longitude 

coordinate system.  

Table 1: The references of the MODIS 250 m products used in the study  

Data ID Data description Date 

MOD13Q1.A2011353.h19v08.005.2012005012455 MODIS 250 m 

MODIS 250 m 

12/2011 

MOD13Q1.A2010353.h19v08.005.2011006040443 12/ 2010 
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4.2 Methods 

4.2.1 Processing of forest inventory data 

The forest exploitation inventory data was converted into a digital format dataset by 

geo-localizing (positioning the trees on their relative field locations) using ArcGIS 

10 software. Geo-localization of the data was carried out through on-screening 

digitizing, using the field data sheets and field sketched inventory maps ‘les 

croquis’ as support documents. The dataset was then attributed based on 

information presented on the field data sheets. 

4.2.2 Quantification of above- ground biomass of the commercial tree species 

The forest exploitation inventory data as described in section 4.1.1 above was used 

to calculate the above-ground biomass of the trees inventoried in the study area. 

The parameters found in the datasets that were useful for calculating above-ground 

biomass were the tree species names and the diameter at breast height (DBH) of the 

individual trees.  Above-ground biomass was estimated through the use of species 

specific allometric equations. The equations were computed in MS excel and the 

volumes of the individual trees calculated accordingly.  The calculated tree volumes 

were then used alongside the species specific wood densities of the different tree 

species to calculate the above-ground biomass of the individual trees. The general 

biomass equation for moist tropical rainforest developed by Chave et al. (2005)  

was used for tree species whose species specific allometric equations could not be 

located. The equations1 and 2 below are the general forms of the equations for the 

estimation of above-ground biomass based on tree volume and wood density 

(equation 1) and the general biomass equation for moist tropical rainforest 

(equation 2).  

AGB (Mg) = Wood volume (m3) x Species specific wood density (Kg/m3)……. [1] 

AGB (Mg) =ρ*exp (-1.499+2.148ln (D) +0.207(ln(D))2-0.0281(ln(D))3)…….…[2] 

 

Where AGB is above-ground biomass 

 

The allometric equations used for volume estimation were extracted from (Henry et 

al., 2011). The equations were selected according to the following criteria: for each 

species, the first consideration was given to allometric equations that were 
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developed using data collected in Cameroon, if these were unavailable; equations 

developed with data collected in different countries, but with similar climatic and 

ecological characteristics to those of Cameroon were considered.  The third and 

final option was then to use the general biomass equation for moist tropical 

rainforest developed by (Chave et al., 2005)  in the cases were the equations were 

unavailable based on the first two criteria. The equations selected were also 

equations that use DBH as the only input parameters since that was the only 

available parameter in the forest exploitation inventory data that could be used for 

this purpose.  

 

In total, 26 allometric equations were used in the estimation of above-ground 

biomass of the trees. From this number, 25 equations were species specific 

equations for the estimation of tree volumes and one general equation for the direct 

estimation above-ground biomass. 23 of these equations i.e. about 96% were 

observed to be equations developed using data collected in other countries and just 

2 equations i.e. about 7% were equations constructed with data collected in 

Cameroon. The list of the species specific allometric equations used for the 

calculations are presented in appendix 1.  

 

The species specific wood density values used in the study were extracted from the 

databases of FAO and the World Agroforestry Center which are available on the 

respective webpages  of these organizations that were accessed on 23/10/2012 at: 

http://www.fao.org/docrep/w4095e/w4095e0c.htm, 

http://www.worldagroforestry.org/sea/Products/AFDbases/WD/asps/DisplayDetail.

asp?SpecID=2. The average wood density (580 kg/m3) for moist tropical forest 

trees (Brown, 1997) was used for the cases where the species specific wood density 

was unavailable from those two sources. The above-ground biomass for the 

individual trees was calculated and the quantity per hectare was computed. 

4.2.3 Quantification of above-ground biomass affected by logging roads and 

log yards 

In order to quantify the above-ground biomass affected by logging roads and log 

yards, a national reference baseline value of above-ground biomass for the forest 

zone of Cameroon was used. This value (292.7 Mg ha-1) was extracted  from 
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(MINFOF. and FAO., 2005) which is a report of the national forestry resources 

inventory of Cameroon, conducted by the Ministry of Forestry and Wildlife 

(MINFOF) in collaboration with the Food and Agricultural Organization of the 

United Nations (FAO), from 2003-2004. The calculation of the national reference 

baseline for the forest zone was based on trees ≥ 10 cm in DBH (MINFOF. and 

FAO, 2005). The above-ground biomass affected by logging roads was obtained 

through the multiplication of the surface area of the roads by the national reference 

baseline value of 292.7 Mg ha-1. The above-ground biomass affected by the 

construction of log yards was calculated by following the same procedure.  The 

above-ground biomass affected by logging roads, log yards and that of the trees 

logged was then expressed per hectare and subtracted from the reference baseline 

value to assess the amount of above-ground biomass remaining in the study area 

after selective logging activities.  

 

Similarly, a second reference baseline above-ground biomass was established for 

the commercial tree species in the study area based on the initial inventory data of 

all the commercial tree species in the study site. This dataset comprised all the 

commercial tree species indicated in the management plan and that have attained 

the minimum exploitable diameter. The second phase inventory (inventory of trees 

that were effectively logged) was then use to make the comparative analysis. 

 
Figure 7: Geo-localization of the forest exploitation inventory data  
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4.2.4 Determination of the area and the density of logging roads  

The field traced logging roads were uploaded onto an ArcGIS file geodatabase, 

edited and attributed accordingly. The information entered in the attribute table of 

logging roads were the width measurements of the roads, and the road category. 

The length of each road was generated automatically by the software. The naming 

of the roads followed the nomenclature used by the company which categorizes the 

logging roads into principal roads, secondary roads and tertiary roads. The principal 

road is the main centrally located axis in the logging site which also connects the 

logging site to the base camp. The secondary logging roads are the main branches 

from the principal road to different sections within the logging site and the tertiary 

logging roads are off shoots of the secondary roads connecting to the different log 

yards. The area of the logging roads were quantified using the width and length 

measurements in GIS ArcGIS 10 software. These were subsequently summarized 

by logging road categories.  The density of the roads was calculated for each 

sample plot and expressed in km ha-1.   

 

The length of the skid trails (tracks used by the skidders to evacuate logs from the 

positions where they are felled to the log yards) were calculated using the relational 

factor of  41.4 +/- 8.2m length of skid trails  per tree logged in a primary forest 

established by (Iskandar et al., 2006). The trees effectively logged in the study area 

were used as the basis for calculating the total length and the density (km ha-1) of 

the skid trails in each sample plot. The density of the calculated skid trails and the 

density of the field measured roads were then combined and used in correlation and 

regression analysis. This approach was adopted because at the time of field work, 

the skid trails in the study area were no longer accessible and so could not be 

measured directly from the field. 
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4.2.5 Determination of the area and the density of the log yards 

The field collected log yard dataset was also stored in a filegeodatabase. The 

perimeter of each log yard was converted into a polygon surface feature and its area 

calculated with the help of the ‘calculate geometry’ function in ArcGIS. The 

density of the log yards (ha ha-1) was also calculated for each sample block. 

  

Figure 8: Geo-localization of logging infrastructure 

4.2.6 Processing of MODIS 250 m data 

The variables of interest (red reflectance, near infrared, middle infrared, normalized 

difference vegetation index, and enhanced vegetation index) were extracted from 

the MODIS data. The mean value was calculated for each of the variables based on 

the three consecutive composites that were obtained for each of the study periods. 

This approach helped to normalize the observed variation in the data values. The 

mean value of each variable was then computed for the entire sample plots with the 

help of the “Zonal Statistics as table” function in ArcGIS- Spatial Analyst 

extension. The execution of this function required as input data the single band 

geotiff file for each variable and the vector file of the sample plots. The “Zonal 

Statistics as table” function then aggregated the pixels corresponding to each 
sample plot and computed the mean value for each plot. This information was 
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automatically populated in the attribute table of the sample plots in their 

corresponding rows and column positions.  The “Zonal Statistics as table” function 

offers the possibility to calculate many other statistics as desired. 

4.2.7 Data organization 

The datasets created for the study were either spatial or non-spatial datasets. The 

spatial datasets were stored in ArcGIS 10 ‘file geodatabase’ file format. The non-

spatial datasets were stored in MS excel file formats and IBM SPSS statistics file 

format. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Summary of the procedure for quantifying above-ground biomass affected 

by selective logging 

4.3 Statistical analysis 

Statistical analyses were carried out using IBM SPSS Statistic 20. The datasets 

were first explored and checked for any possible abnormalities (outliers and 

leverages). They were further analyzed to ensure that the data fulfilled the different 
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included: correlation analysis to investigate possible relationships between the 

variables (see table 5 below), regression analysis to determine the necessary 

parameters for developing a model for predicting above-ground biomass logged.  

4.3.1 Sample size 

The original sample size for the study was 61 plots with a plot size range from 1-

100 ha. However, from data exploration activities (see section 4.3.3 below), it was 

realized that outliers and leverages observed in the datasets were resulting from 

sample plots that were less than 30 ha in size. Also, in order to ensure that the 

remote sensing information analyzed for any sample plot came from at least 5 

pixels of MODIS data, a threshold plot size was taken at 33 ha and this gave a total 

of 49 plots that were used for the correlation and regression analysis.  The variables 

calculated were further harmonized and made comparable over the sample plots by 

computing the per hectare unit value of the variable for all sample plots.  

4.3.2 Variables 

The variables that were used in the correlation and regression analysis are 

summarized in table 2. 

Table 2: A list of the data used in the statistical analysis  

Variable      
Type of 

variable 

Description / Source 

AGB logged  Dependent From forest exploitation 
inventory data 

Density of logging roads*  

Independent 

Field measured road lengths 
combined with calculated lengths of  
skid trails  

Density of log yards** Field measurements  

EVI   
 
 
MODIS 250m products ( December  
2010 & 2011) 
 

MIR  

NDVI 
NIR 

Red reflectance 
AGB = Above-ground biomass (Mg ha-1), *Expressed as Km ha-1, **expressed as ha ha-1  
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4.3.3 Data exploration 

Data exploration involved checking the different datasets for any possible 

abnormalities. Three tools in IBM SPSS statistics software were used for data 

exploration: boxplots for checking the possible presence of outliers and leverages 

(extreme values in the datasets). The identified outliers and leverages were 

excluded from the analysis after establishing the possible reason for their presence 

in the datasets. Histogram and P-P plots were used for checking the normal 

distribution of regression residuals (see appendix 4 & 5) and scatterplots were used 

to verify the linear relationship between the dependent variable-above-ground 

biomass logged and the field measured and remote sensing independent variables 

(Melissa and Curda, 2007, Buxton, 2008, Chi and Foregger, 2013).  

4.3.4 Correlation analysis   

The correlation analysis was carried out with the aid of the bivariate correlation 

function in IBM SPSS Statistic 20. The purpose of this analysis was to identify 

possible associations between the independent variables and dependent variable 

(see table 2 above). The correlation analysis makes a comparison of all input 

variables and the output is a matrix table with corresponding comparisons.  The 

important parameters for interpreting the correlation analysis are the Pearson 

Correlation Coefficient and the probability value (sig).  The Pearson Correlation 

Coefficient ranges from -1 to 1 and the more the Pearson Correlation Coefficient 

approaches the extreme value -1 and 1, the stronger the association between the 

variables under investigation.   A negative Pearson Correlation Coefficient 

indicates a negative relationship (meaning that when one of the variables increases, 

the other decreases), while a positive Pearson Correlation Coefficient signifies a 

positive relationship (meaning that as one variable increases, the other also 

increases). The significance of the association is given by probability value (sig), 

which is the probability of the null hypothesis being true. It is significant if it is less 

than the significant level stated for the null hypothesis (usually 0.05 or 0.01). In 

SPSS, the significant associations are marked with an asterisks and the level of 

significance is also indicated (Melissa and Curda, 2007, Buxton, 2008). The 

correlations of the different variables are presented on tables 3 and appendix 3 

below. The correlation of the variables then served as the basis for a stepwise 

regression analysis and the subsequent selection of the variables for the 
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development of a simple linear regression model and a multiple linear regression 

model for predicting above-ground biomass logged.  

 

Table 3: The correlation matrix of the dependent and the independent variables 

 

4.3.5 Linear regression analysis 

Stepwise linear regression analyses were carried out in IBM SPSS statistics 

software to identify the variables and the corresponding model parameters for the 

development of models for predicting above-ground biomass logged (the lone 

dependent variable analyzed in the study). The stepwise linear regression analysis 

method in backward mode is used when multiple independent variables are being 

regressed while simultaneously removing those that are unimportant in explaining 

the variation in the dependent variable. In this regression analysis method, the 

independent variables are also analyzed for collinearity using the “collinearity 

diagnostics function”.  Collinearity indicates how the explanatory variables 

correlate with each other. If two explanatory variables have a strong correlation, 

they both have about the same strength in explaining the dependent variable i.e. 

Independent variables Parameters Above-ground 
biomass logged ha-1 

Logging road density  Km ha-1 Pearson Correlation .813** 
Sig. (2-tailed) .000 

Log yard density ha  ha-1 
Pearson Correlation .398** 
Sig. (2-tailed) .005 

EVI   
Pearson Correlation -.023 
Sig. (2-tailed) .876 

MIR   
Pearson Correlation .242 
Sig. (2-tailed) .094 

NDVI   
Pearson Correlation -.333* 
Sig. (2-tailed) .020 

NIR   
Pearson Correlation .077 
Sig. (2-tailed) .598 

RED reflectance   
Pearson Correlation .290* 
Sig. (2-tailed) .043 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N = 49= sample size 
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either of the variables is sufficient in explaining the variation in the dependent 

variable as the addition of the other variable does not bring in any additional 

information. The “VIF” which stands for variance inflation factor is one of the 

ways to determine collinearity in SPSS. VIF values around 1 are reasonable and 

show that there is no collinearity between the variables. A VIF value which is 

higher than 10 indicates that the variables are collinear (IDRE-UCLA and Leeds 

University websites available at   

http://www.ats.ucla.edu/stat/spss/webbooks/reg/chapter2/spssreg2.htm, accessed on 

28/02/2013 and http://www.geog.leeds.ac.uk/courses/other/statistics/spss/stepwise/; 

accessed on 20/01/2013 respectively). 

 

In this study, the VIF values and the correlation coefficients (appendix 3) were used 

to determine collinearity between the independent variables. For the variables that 

were collinear, the first that was selected by the stepwise regression process was 

retained for the model. 

4.3.6 Interpreting the linear regression parameters 

The parameters that were used in interpreting and selecting the best fit models 

were: 

The R2 statistic: The R2 statistic is an indicator of the “goodness of fit” of the 

model. It represents the percentage of the variation in the response (dependent) 

variable that is explained by the explanatory (independent) variables used in the 

model. This means that the higher the R2 statistic, the better the model fits the data. 

Also the "adjusted R2" statistic can be used to judge how well the model fits the 

dataset. The "adjusted R2" statistic downward adjusts the R2 statistic when 

additional variables are added to the model. This is useful in telling if one 

regression model fits the data better than another based on whether the adjusted R2 

statistic for the two models is higher or lower when other variables are added into 

the model. The Standard Deviation (SD) is a measure of the variation around the 

predicted value and so is important for the determination of the precision of the 

prediction. The unstandardized coefficients show the contribution of the 

independent variable(s) in explaining the dependent variable. The standardized 

coefficients report the effects of each independent variable on the dependent 

variable in standard deviations and permits for a direct strength comparison 
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between the independent variables used in the model. The significance of the 

statistical test of each independent variable, which tests the probability whether 

the correlation between the independent variables and the dependent variables was 

due to chance i.e. random sampling error (SPSS Tutorials, 2013). 

The above parameters were interpreted for the two regression models from the 

stepwise regression analysis and were the basis for the decision on the best fit 

model. 

4.3.7 Verification of the assumption of linear regression analysis 

Finally, the assumptions for linear regression analysis were verified as follows: 

The linearity of the regression model was checked by producing scatterplots of the 

explanatory variables (density of logging roads and NDVI) against the response 

variable (above-ground biomass logged). The normal distribution of the regression 

residuals (approximates for the error terms) was verified through histogram plots 

and P-P plots of the regression standardized residuals (see appendix 5).  

4.3.8 Testing the linear regression hypothesis 

The aim of this test was to find out whether at the 5% significance level the data 

provided sufficient evidence to conclude that the density of the logging roads and 

NDVI were useful predictors for above-ground biomass logged. The conclusions 

from this test were made from the interpretation of the slope lines of the simple and 

the multiple linear regression models. The assumption for this test were that the 

slope lines of the linear regression models = 0, in other words that there is no 

relationship between the dependent variable (above-ground biomass logged) and 

the independent variables (density of logging roads and NDVI). The hypothesis for 

the test was formulated thus: 

H0: = 0 (density of logging roads and NDVI are not useful predictors of above-

ground biomass logged), Ha:  ≠ 0 (density of logging roads and NDVI are useful 

predictors of above-ground biomass logged. The null hypothesis was either rejected 

or accepted at the significance Level  = 0.05 at the critical p-value ≤ 0.05. That is 

the null hypothesis was rejected if the slope of the regression line was not equal to 

zero otherwise it was accepted. 
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4.3.9 Verification of the precision of predicted above-ground biomass logged 

The following values were used to verify the precision of the predictions made by 

the simple linear regression model: minimum, mean, mean ± SD and maximum 

values of the density of the logging roads dataset. The precision of the multiple 

linear regression model was verified by using nine different combinations of the 

mean and mean ± SD of the density of the logging roads and the NDVI values in 

running the model. The confidence interval of the predictions (predicted mean 

value and predicted value) was set at 95%. The precision of the predictions was 

judged from the standard error of the predicted mean value as well as from 

comparisons with the measured mean value of above-ground biomass logged.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Summary of the procedure for developing prediction models for above-

ground biomass logged 
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5 RESULTS 

5.1 Assessment of above-ground biomass logged 

The results indicated that 0.78 trees were logged per hectare, representing about 

3.51 Mg ha-1 of above-ground biomass harvested. Species wise, Triplochyton 

scleroxylon was the species that was highly harvested (68.08% of all the trees 

harvested and 0.53 tree ha-1). It also accounted for about 58.4% of the total above-

ground biomass logged per hectare. Entandrophragma cylindricum was the second 

highest tree species logged (18.3% of the trees logged and 0.14 tree ha-1). It 

accounted for 31.1% of the total above-ground biomass harvested (see table 7 

below). 

Table 4: The synthesis of above-ground biomass harvested by species 

Tree species DME 
average 

Tree 
count % Count 

ha-1 
AGB 
ha-1 

% 
AG
B 

ha-1 
E. angolense 108 9 0.26 0.002 0.012 0.3 

E.candollei, 120 37 1.07 0.008 0.077 2.2 

E.cylindricum 103 632 18.34 0.144 1.092 31.1 

E. utile 110 14 0.41 0.003 0.023 0.7 

Erythropleum ivorense 79 92 2.67 0.021 0.089 2.5 

Guarea spp, 78 61 1.77 0.014 0.046 1.3 

Guibourtia ehié 105 2 0.06 0.000 0.004 0.1 

Khaya sp 86 26 0.75 0.006 0.022 0.6 

Mansonia altissima 43 3 0.09 0.001 0.001 0.0 

Milicia excels 115 6 0.17 0.001 0.012 0.3 

Pericopsis elata 80 109 3.16 0.025 0.029 0.8 

Pterocarpus soyauxii 58 106 3.08 0.024 0.051 1.4 

Swartzia fistuloides, 63 3 0.09 0.001 0.002 0.1 

T. scleroxylon 104 2346 68.08 0.533 2.049 58.4 

Total - 3446 100 0.783 3.51 100 
 

AGB= Above-ground biomass (Mg ha-1), DME average = Average diameter exploited per species, # of trees = 

total number of trees logged, E= Entandrophragma, T = Triplochyton 
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5.2 Assessment of above-ground biomass affected by logging infrastructure 

The results showed that the logging infrastructure (principal logging roads, 

secondary logging roads, tertiary logging roads and log yards) covered a total 

surface area of 85.04 ha out of the 4400 ha that made up the study area. The results 

further indicated that the tertiary roads covered 41.0% of the total infrastructure 

area, secondary roads 29.8%, principal logging roads 23.2% and log yards 6.0% 

(see table 5 below).  

Table 5: The synthesis of the area covered by logging infrastructure 

Logging 

infrastructure 

Length 

(m) 

Width 

(m) 

Area 

(ha) 
Percentage 

Tertiary logging roads  23246.15 15 34.87 41.0 

Secondary logging roads  12661.49 20 25.32 29.8 

Principal logging roads  7892.78 25 19.73 23.2 

Log yards  - - 05.12 06.0 

Total - - 85.04 100 

 

In terms of the quantity of above-ground biomass affected, the results revealed that 

38.3 % of the above-ground biomass was logged, 25.3% was affected by the 

construction of tertiary roads, 18.3% by the construction of secondary roads, 14.3% 

by the construction of principal logging roads and 3.8% by the construction of log 

yards (see table 6 and figure 11 below).  

Table 6: Quantity of above-ground biomass affected by selective logging activities 

Logging infrastructure 
Above-ground biomass 

affected Mg ha-1 
Percentage 

Tertiary logging roads  2. 23 25.3 

Secondary logging roads  1.68 18.3 

Principal logging roads  1.31 14.3 

Log yards  0.34 3.8 

Logged trees 3.51 38.3 

Total 9.16 100 
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Figure 11: A comparative analysis of above-ground biomass affected by selective 

logging activities  

5.3 Comparison of above-ground biomass logged with respect to the 

commercial tree potential  

The analysis showed that 50% (15,436 Mg) of the total above-ground biomass of 

valuable commercial tree species that were inventoried in the study area was 

effectively logged and about 50% was unlogged or remained in the plots after the 

selective logging process. (See table 7 & figure 12 below). 
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Table 7: A comparative analysis of above-ground biomass of commercial trees after 

logging 

Tree species 

Total above-
ground 
biomass 

inventoried 
(Mg) 

Total 
above-
ground 
biomass 
logged 

Total above-
ground biomass 
remaining (Mg) 

Alstonia boonei 37 0 37 

Amphimas pterocarpoides 1,227 0 1,227 

Aningeria altissima 8 0 8 

Aningeria robusta 
7 
 0 7 

Autrenella congolensis 64 0 64 

Ceiba pentandra 213 0 213 

Celtis zenkerii 433 0 433 

Coeloncaryon preussi 64 0 64 

Detarium macrocarpum 249 0 249 

Entandraphragma angolense 103 52 51 

Entandraphragm candollei 590 338 252 

Entandraphragm cylindricum 7,801 4,804 2,996 

Entandraphragm utile 177 102 75 

Eribroma oblongum 242 0 242 

Erythrophleum ivorense 669 390 279 

Gambeya africana 20 0 20 

Guarea sp 334 203 132 

Guibourtia ehié 49 16 33 

Khaya sp 219 95 
 

124 
Mansonia altissima 87 4 83 

Milicia excelsa 125 52 74 

Nesogordonia papaverifera 59 0 59 

Ongokea gore 207 0 207 

Pericopsis eleta 176 130 46 

Piptadeniastrum africanum 60 0 60 

Pterocarpus soyauxii 466 223 243 

Pycnanthus angolensis 35 0 35 

Swartzia fistuloides 32 10 22 

Terminalia superba 270 0 270 
Triplochyton scleroxylon 
 16,496 9,017 7,479 

Total 30,521 15,436 15,086 
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Figure 12: Comparative analysis of above-ground biomass of commercial trees 

after logging 

This figure shows the quantity of above-ground biomass of commmercial tree 

species that was inventoried, the quantity that was logged and the quantity that 

remained unlogged after selective logging activities in the study area.  

5.3.1 Comparison of above-ground biomass affected with respect to the national 

reference baseline 

 

N.B. The above-ground biomass reference baseline (292.7Mg ha-1) was extracted from MINFOF (2005) 

Figure 13: Comparative analysis of the total above-ground biomass after logging 
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This figure shows the above-ground biomass available in the study area (based on a 

national reference baseline value), the quantity that was logged and the quantity 

that remained  after selective logging. It indicates that from an intitial national 

reference baseline of 292.7 Mg ha-1 of above-ground biomass, 9.16 Mg ha-1 (3%) 

was affected by selective logging actives (logged trees, the construction of logging 

roads and log yards), while 283.54 Mg ha-1  ( 97 %) of above-ground biomass was 

unaffected. 

5.4 Correlation analysis  

The purpose of the correlation analysis was to investigate possible relationships 

between the list of selected independent variables and the dependent variable- 

above-ground biomass logged. The results from the valid comparisons as revealed 

by the correlation analysis (table 3 above) are presented in the following 

subsections. 

5.4.1 Correlation of field measured variables with above-ground biomass 

logged 

The results showed that the density of logging roads had a strong significant 

positive correlation with above-ground biomass logged (Pearson correlation 

coefficient =0.813, sig =0.000), while the density of log yards showed a weak 

positive correlation with above-ground biomass logged (Pearson correlation 

coefficient = 0. 398, sig = 0.005). The scatterplots elucidating the correlations 

between above-ground biomass logged and the density of logging roads as well as 

above-ground biomass logged and the density of log yards are presented in Figure 

14 A and B below.  

 

 

 

 

 

 

 

 

 

A) Correlation between density 
of logging roads and above-
ground biomass logged 
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B) Correlation between density of log yards and above-ground biomass logged 
Figure 14: Correlation of above-ground biomass logged with field measured 

independent variables 

5.4.2 Correlation of MODIS variables with above-ground biomass logged 

The independent variables derived from MODIS 250 m products showed weak 

associations with above-ground biomass logged. The relationships as revealed by 

the analysis were as follows: NDVI showed a weak negative correlation with 

above-ground biomass logged (Pearson correlation coefficient = -0.333, sig = 

0.020), EVI also showed a weak negative correlation (Pearson correlation 

coefficient = -0.023 and sig = 0.876). On the other hand, MIR, NIR and red band 

reflectance all showed weak positive correlations with above-ground biomass 

logged. MIR (Pearson correlation coefficient = 0.242, sig = 0.096), NIR (Pearson 

correlation coefficient = 0.077, sig = 0.598) and red band reflectance (Pearson 

correlation coefficient = 0.290, sig = 0.043). The scatterplots elucidating the 

correlations between above-ground biomass logged and the remote sensing derived 

independent variables are shown in figure 15 (A-E) below.  
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(A) The correlation between NDVI and above-ground biomass logged 

 

 

 

 

 

 

 

 

 

 

 

(B)  The correlation between red band reflectance and above-ground biomass 
logged 
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(C) The correlation between MIR reflectance and above-ground biomass logged 

 

 

 

 

 

 

 

 

 

 

(D) The correlation between NIR reflectance and above-ground biomass logged 

 

 

 

 

 

 

 

 

 

 

 

 

 

(E) The correlation between EVI and above- ground biomass logged 

 

Figure 15: Correlation of above-ground biomass logged with variables from 

MODIS 250 m data 

5.5 Regression analysis 

The stepwise linear regression analysis between the field measured independent 

variables and the dependent variable suggested two models: a simple linear 

regression model and a multiple linear regression model that are useful for 
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predicting above-ground biomass logged. The parameters of these models are 

presented in table 8 (A-D) below, while the model equations and predictions made 

to assess the precisions of the predictions from the models are presented in sections 

6.4.1 & 6.4.2. 

Table 8: Parameters of linear regression for predicting above-ground biomass 

logged 

A: Descriptive Statistics of the datasets 

Variables Mean Std. Deviation N 
Above-ground biomass logged (Mg ha-1) 3.431 1.1626 49 

Road density (km ha-1) 0.040 0.0146 49 

NDVI  -201.67 58.760 49 

 

B: Model Summaryc 

Model R R 
Square 

Adjusted 
R Square 

Std. Error 
of the 

Estimate 

Change Statistics 
R Square 
Change 

F Change df1 df2 Sig. F 
Change 

1 .813a .662 .654 .6836 .662 91.850 1 47 .000 
2 .852b .725 .713 .6226 .064 10.652 1 46 .002 

a. Predictors: (Constant), Road density (km ha-1) 
b. Predictors: (Constant), Road density (km ha-1), (NDVI) 
c. Dependent Variable: Above-ground biomass logged (Mg ha-1) 

 
C : Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 95.0% Confidence 
Interval for B 

B Std. 
Error 

Beta Lower 
Bound 

Upper 
Bound 

1 
(Constant) 0.835 .288  2.901 .006 0.256 1.414 
Road density (km ha-1) 64.882 6.770 0.813 9.584 .000 51.263 78.502 

2 
(Constant) -0.095 0.387  -0.246 .806 -0.875 0.684 
Road density (km ha-1) 62.851 6.198 0.788 10.141 .000 50.375 75.326 
NDVI  -0.005 0.002 -0.254 -3.264 .002 -0.008 -0.002 

a. Dependent Variable: Above-ground mass logged (Mg ha-1) 
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D: ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 42.921 1 42.921 91.850 .000b 

Residual 21.963 47 .467   

Total 64.884 48    

2 

Regression 47.051 2 23.525 60.682 .000c 

Residual 17.833 46 .388   

Total 64.884 48    

a. Dependent Variable: Above-ground biomass logged Mg ha-1 

b. Predictors: (Constant), Road density km ha-1 

c. Predictors: (Constant), Road density km ha-1, NDVI 

5.5.1 The simple linear regression model 

The simple linear regression model is based on the density of the logging roads 

(Km ha-1) as the input independent variable. This model strongly predicted above-

ground biomass logged (R2=0.66, sig=0.000). This result indicates that 66% of the 

variation in above-ground biomass logged (Mg ha-1) is explained by the variation in 

the density of the logging roads (Km ha-1) with a 0.000 significant level. The value 

of the slope of the linear of regression line is 64.882; hence the null hypothesis is 

rejected.  The model equation is as follow: 

 

Y = 0.835 + 64.882 X ………………….. [3] 

 

Where: Y= above-ground biomass logged in Mg ha-1, X= density of logging roads 

in km ha-1 

5.5.2 Prediction of above-ground biomass logged using simple linear 

regression model 

The 95% confidence interval (CI) for predicted above-ground biomass logged (Mg 

ha-1), using the simple linear regression model is summarized in table 9 below. The 

table shows the values of the density of the logging roads (km ha-1) that were used 

for the predictions, the predicted value of above-ground biomass logged (Mg ha-1), 

the standard error (S.E) of the predicted mean values of above-ground biomass 

logged, the confidence interval (CI) of the predicted mean values and the 
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confidence interval for any predicted value of above-ground biomass logged (Mg 

ha-1). 

Table 9: Prediction of above-ground biomass logged based on simple linear 
regression model 
AGB = above-ground biomass, S.E = Standard error, LMCI = Lower confidence interval limit of predicted 

mean, UMCI = Upper confidence interval limit of predicted mean, LC I = Lower confidence interval limit of 

predicted value, UCI = Upper confidence interval limit of predicted value, min = minimum value, Max = 

Maximum value and SD= Standard deviation 

density of logging 
roads (km ha-1) 

AGB logged 
Mg ha-1 

S.E of 
predicted 

mean 

95% confidence interval  
for predicted mean 

95% confidence interval  
for predicted value 

LMCI UMCI LCI UCI 
0.007 (min) 1.302 0.243 0.814 1.790 -0.157 2.761 
0.025 (mean-SD) 2.457 0.141 2.174 2.741 1.053 3.861 
0.040 (mean) 3.430 0.098 3.234 3.627 2.041 4.820 
0.055 (mean+SD) 4.404 0.141 4.120 4.687 2.999 5.808 
0.068 (Max) 5.254 0.214 4.823 5.684 3.813 6.694 

5.5.3 The Multiple linear regression model 

The multiple linear regression model is based on the density of the logging roads 

(Km ha-1) and NDVI as input independent variables. It strongly predicted above-

ground biomass logged (R2 = 0.73, sig = 0.002). This indicates that 73% of the 

variation in above-ground biomass logged (Mg ha-1) is explained by the variation in 

the density of the logging roads and NDVI with a 0.002 significance level. The 

slope of the multiple regression model (62.851 for X1 and - 0.005 for X2) indicates 

that the slope of the regression line is not zero, hence the null hypothesis is 

similarly rejected. The model equation is presented below.  

 

Y = – 0.095 + 62.851X1 – 0.005021X2 ……………….. [4] 

 

Where: Y = above-ground biomass logged in Mg ha-1, X1 = density of logging 

roads density km ha-1, and X2 = NDVI 
 

5.5.4 Prediction of above-ground biomass logged using multiple linear 

regression model 

The 95% confidence interval (CI) for the predicted above-ground biomass logged 

using the multiple linear regression model is summarized in table 10 below. The 

table shows the values of the density of the logging roads (km ha-1) and NDVI 

values that were used for the predictions, the predicted value of above-ground 

biomass logged (Mg ha-1), the standard error (S.E) of the predicted mean values of 

above-ground biomass logged, the confidence interval (CI) of the predicted mean 
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values and the confidence interval for any predicted value of above-ground biomass 

logged (Mg ha-1). 

Table 10: Prediction of above-ground biomass using multiple linear regression  

AGB = above-ground biomass, S.E = Standard error, LMCI = Lower confidence interval limit of predicted 

mean, UMCI = Upper confidence interval limit of predicted mean, LC I= Lower confidence interval limit of 

predicted value, UCI = Upper limit of confidence interval of predicted value. 

 

Density of 
logging roads 

km ha-1 
NDVI 

AGB 
logged 
Mg ha-1 

S.E 
predicted 

mean 

95% confidence interval  
for predicted mean 

95% confidence interval  for 
predicted value 

LMCI UMCI LCI UCI 
0.040 -142.995 3.136 0.127 2.881 3.391 1.857 4.415 
0.040 -260.532 3.726 0.127 3.470 3.981 2.447 5.005 
0.040 -201.764 3.431 0.089 3.252 3.610 2.165 4.697 
0.025 -201.764 2.513 0.127 2.258 2.769 1.234 3.792 
0.055 -201.764 4.374 0.129 4.115 4.633 3.094 5.653 
0.025 -260.532 2.808 0.161 2.484 3.132 1.513 4.103 
0.025 -142.995 2.218 0.150 1.916 2.521 0.929 3.508 
0.055 -260.532 4.668 0.152 4.363 4.974 3.378 5.958 
0.055 -142.995 4.079 0.162 3.752 4.406 2.783 5.374 
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6 DISCUSSION 

6.1 Effects of selective logging activities on above-ground biomass 

The results showed that only 50% of the potentially harvestable commercial trees 

were effectively logged and that the average number of trees logged per hectare 

was 0.78 trees, representing about 3.51 Mg ha-1 of above-ground biomass logged in 

AAC 3-4. Also, the above-ground biomass logged (3.51 Mg ha-1) was lower than 

the quantity affected by the construction of the logging roads and log yards which 

showed a value of 5.65 Mg ha-1 of above-ground biomass affected.  

 

The total above-ground ground biomass of a tree is given by the partial biomass 

multiplied by the biomass expansion factor (BEF) (Henry et al., 2011). In this 

study, only the partial biomass (biomass of tree logs) was calculated as the biomass 

expansion factor was not applied in the calculations that used equations in the form 

of the general equation (1). This means that the above-ground biomass calculated 

based on those equations was probably underestimated. 

 

The activity level comparison reveals that the trees logged accounted for 38.3% of 

the total above-ground biomass affected, while the tertiary logging roads accounted 

for the loss of 25.3%. The secondary logging roads and the principal logging roads 

were responsible for 18.3% and 14.3% of the total above-ground biomass affected 

respectively. The least impact on above-ground biomass was observed from the log 

yards which were responsible for only 3.8% of the total above-ground biomass 

affected.  Furthermore, a comparison of the total above-ground biomass affected by 

the selective logging against the initial quantity of above-ground biomass available 

in the study site (based on the national reference baseline value) indicated that 

selective logging activities affected just 3% of the initial quantity of above-ground 

biomass available in the study area. 

 

From the above, analysis it is observed that a greater quantity of above-ground 

biomass was affected by the construction of the logging roads and the log yards 

(about 59% of the total affected above-ground biomass) as opposed to 41% which 

was valuably logged or harvested. This shows that though the intensity of wood 

harvesting is low, there is high impact on above-ground biomass coming from the 
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development of the associated infrastructure.  The magnitude of the impact 

decreased in the order tertiary logging roads, secondary logging roads, principal 

logging roads and Log yards.  

 

The high density of the tertiary logging roads compared to the other categories of 

the logging roads are indicative of the fact that many of such roads are required for 

a successful selective logging operations in the field. This high density of the 

tertiary logging roads is possibly explained by the fact that they constitute the end 

branches of the road network connecting each log yard to the main evacuation point 

or the sawmill; thus a good number of the tertiary roads are required in order to 

access and evacuate wood stored in the log yards. Although some log yards were 

observed to be located along the principal and secondary logging roads, a majority 

of this infrastructure is found at the end points of the tertiary roads. These analysis 

also show that though the tertiary logging roads are smallest in terms of width (15 

m), they are important in length and this is the plausible explanation for the high 

impact on above-ground biomass, when compared to that of the secondary logging 

roads and the primary logging roads which are larger (20 m and 25 m) respectively. 

 

As already indicated above, 0.78 trees were logged per hectare and the total 

measured impact of selective logging on above-ground biomass was (3%), 

indicating that 97% of above-ground biomass is unaffected by selective logging 

activities. This leads to the conclusion that selective logging activities were 

observed to have a low impact on above-ground biomass in the study area. 

 

This finding is in general agreement with previous research work conducted in 

Cameroon and in other countries of the Congo Basin where it has been established 

that the maximum number of trees harvested during selective logging is 4 trees per 

hectare. The results of the project A.P.I Dimako, in South East Cameroon from 

1992-1996; summarized in (Durrieu de Madron et al., 1998) indicates that 0.35 

trees were logged per hectare in a forest that is selectively logged for the first time 

and that 0.77 trees (10.8 m3 ha-1) was harvested in a forest that is being logged for a 

second time. Also, a study in CIB concessions in the north of the Republic of 

Congo showed that 0.53 trees were logged per hectare, corresponding to about 11 

m3 and 10.20 t C ha-1 (Brown et al., 2008).  Similarly, a study conducted in ‘Monts 
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de Cristal’ in Gabon has also reported a logging intensity of 0.82 trees per hectare 

(Vincent Medjibe et al., 2011) . Also, other regional studies (Ruiz Perez et al., 

2005) have equally established that between 0.7- 2.0 trees are logged per hectare in 

selective logging activities across Central African countries.  

 

A direct comparison of the results from the analysis of the impact of the 

construction of the different logging infrastructure has not been very feasible 

because most researchers who have worked on the subject have tend to group and 

report the impact of logging roads just as one category “roads” without 

differentiating the road categories. Nonetheless, the report of the REDD+ pilot 

study which was conducted in the same zone in 2010 indicated that 16.55 ha of 

logging roads were constructed in a certified forest concession and 15.77 ha of 

roads were constructed in a forest concession which was uncertified. The 

interpretation of these figures is that the same quantity of above-ground biomass 

was affected by logging roads in the certified and the uncertified forest concession. 

The same study however indicated that the area of skid trails in the certified 

concession was bigger than that in the uncertified concession; which is also 

similarly interpreted. Another study by (Tamungang, 2010) in AAC 2-3 of FMU 

10-064 found out that logging roads and log yards covered a total surface area of 

54.22 ha. From these values, it is estimated that 4.3 Mg ha-1 of above-ground 

biomass was affected by logging roads and log yards which is reasonably close to 

the quantity observed in this study (5.65 Mg ha-1). 

 

Through the above results and analysis, the general observed trend is a low impact 

of selective logging activities on above-ground biomass. Though this study 

investigated only some of the factors of selective logging activities that have an 

impact on above-ground biomass, it is presumed that a full assessment of all the 

other factors could likely see a change in some of the values presented in this 

document, but it is unlikely to reverse the trend of the findings of this research.  

This position is further strengthened by the conclusions of the 2010 REDD+ pilot 

project in Cameroon which established that “currently Cameroon has low historical 

rates of deforestation and forest degradation but developments in other related 

sectors are likely to increase the pressure on forest related resources in the future, 
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and Cameroon likewise other Congo Basin countries will stand to lose in a REDD+ 

system which is based on historical deforestation and forest degradation rates only”.  

6.2 Correlation analysis and regression analysis 

The observed relationship between the density of logging roads and above-ground 

biomass logged was not surprising because roads development is an important 

feature associated with selective logging as the roads provide access to the location 

and the evacuation of harvested trees as well as for the passage of the heavy 

machinery used in selective logging operations. Because of this high dependency of 

selective logging operations on roads, it is expected that the greater the number of 

trees harvested the more the number of roads (or length) of the roads that would be 

constructed. This dependency of selective logging operations on the construction of 

roads has been used as a tool to monitor the evolution of selective logging within 

forest concessions and also to track illegal logging activities. The Interactive 

Forestry Atlas of Cameroon developed by the World Resources Institute (WRI) 

makes use of this knowledge and is helping forestry administrations in 6 countries 

of the Congo Basin in their effort to efficiently monitor the evolution of selective 

logging in authorized forest concessions and also to identify illegal logging both in 

authorized forest concession and in unauthorized locations (WRI, 2005, 2007, 

2012). The tool works by combining logging roads tracked from satellite images 

and the boundaries of the forest concession (where logging is supposed to be 

occurring) in a GIS system and making visual interpretations. 

 

It was however, surprising to discover a weak association between the density of 

log yards and above-ground biomass logged. One would expect a strong 

relationship between these two variables from the reasoning that a large log yard 

will be required to store many trees harvested and a small one will be required for 

few trees harvested. The results were unable to bring out this relationship and a 

probable explanation to this finding is linked to the experimental design which 

made it impossible to capture the relationship. The log yards were analyzed per 

sample plots, but as can be observed from figures 7 & 8 above, there are sample 

plots where harvesting occurred but which do not have log yards. This means that 

the harvested wood in such plots was transported and stored in a log yard located 

elsewhere. Therefore, monitoring the wood flow to different log yards and using the 
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log yards as the samples was necessary for capturing this relationship rather than 

comparing above-ground biomass logged in each plot by the size of the log yard in 

the plot as was done in the study. 

 

The weak correlation of the remote sensing variables derived from MODIS 250 m 

products: red band reflectance, Near infrared reflectance (NIR), Middle infrared 

reflectance (MIR), Normalized Difference Vegetation Index (NDVI), and Enhanced 

Vegetation Index (EVI) is probably due to the spatial resolution of the data (250 m 

pixel size) which may be very coarse to capture and differentiate the effects of 

selective logging activities at this spatial resolution. 

6.2.1 The simple linear regression model 

The stepwise linear regression modeling method proposed a simple linear 

regression model and a multiple linear regression model for predicting above-

ground biomass logged in the study site. The simple linear regression model is 

based on the density of logging roads as explanatory variable and the multiple 

linear regression model is based on the density of the logging roads and NDVI from 

MODIS 250 m as explanatory variables for the prediction of above-ground biomass 

logged.  

 

The results revealed that the simple linear regression model has an R2 value of 0.66 

and a significance level of 0.001. This means that 66% of the variation in the 

above-ground biomass logged is explained by the variation in the density of the 

logging roads with a 0.001 significance level. The slope of the linear regression line 

is 64.882, indicating that the slope of the regression line is not zero, hence the null 

hypothesis is rejected. Therefore, there is sufficient evidence to conclude that the 

density of the logging roads is useful as predictor of above-ground biomass logged. 

The value for the slope of the regression line is positive meaning that the 

relationship between the density of the logging roads and the above-ground 

biomass logged is positive; i.e. above-ground biomass logged will increase with 

increasing density of logging roads. 

 

In addition, the value of the slope indicates that a unit change in the density of the 

logging roads (km ha-1) will result in an increase of 64.882 of above-ground 
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biomass logged (Mg ha-1). Furthermore, the 95% confidence interval of the slope of 

the regression line falls between 51.263 and 78.502 Mg ha-1. Therefore, with 95% 

certainty, the study is able to confirm that the slope of the simple linear regression 

model falls within between 51.263 and 78.502 Mg ha-1. 

6.2.2 Prediction of above-ground biomass logged using the simple linear 

regression model 

The predicted above-ground biomass logged using the minimum, the mean ± SD 

and the maximum values from the density of the logging roads dataset were 

observed to fall within the range of 1.302 - 5.254 Mg ha-1. The mean value of 

above-ground biomass logged calculated from field measured data was 3.431 Mg 

ha-1. Also, the standard deviation (SD) of the predicted mean value was 0.683 while 

the standard errors (S.E) of the predicted values ranged from 0.09 - 0.243. These 

statistics all indicate a good precision of the predictions of above-ground biomass 

logged using the simple linear regression model.  Naturally, it was observed that the 

predicted values were very close to the mean value of the field measured above-

ground biomass logged when the predictor values were selected close to the mean 

value of the density of the logging roads data set, and that extreme predicted values 

were obtained when selected predictor values were further away from the mean 

value i.e. with increasing standard deviations from the mean values of the predictor 

variable, the precision of the model decreased. Therefore, the precision of the 

model in predicting above-ground biomass logged is observed to be high when the 

density of the logging roads values are within mean ± SD and outside this range, 

the precision tends to diminish. Also, the 95% confidence interval (CI) of the 

predicted mean values was observed to be more precise than the 95% confidence 

interval of the predicted values. The difference between the two Confidence 

intervals is that the former is for the predicted mean values whereas the latter is for 

any predicted value. 

6.2.3 The multiple linear regression model 

The multiple linear regression model using both the density of the logging roads 

(km ha-1) and NDVI values derived from MODIS 250 m products gave an R2 value 

of 0.73 with a 0.000 significance level; indicating that 73% of the variation in 

above-ground biomass logged was explained by the variation in the density of the 
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logging roads (km ha-1) and NDVI. This model also shows that by including the 

NDVI values in the simple linear regression model gave a reward of a 7 percent 

increase in the performance of the model.  

 

Like in the simple regression model, the slope of the multiple regression model 

(62.851 for X1 and - 0.005 for X2) indicates that the slope of the regression line is 

not zero, hence the null hypothesis is rejected. Hence, it is similarly concluded that 

there exist sufficient evidence to confirm that the density of the logging roads (km 

ha-1) and NDVI values from MODIS 250 m products are useful predictors for 

predicting above-ground biomass logged (Mg ha-1). The value for the slope of X1 is 

positive, indicating a positive relationship, while that for X2 is negative, similarly 

indicating a negative relationship. 

 

These values of the slope line further indicate that a unit change in the density of 

the logging roads(km ha-1) corresponds to a change in above-ground biomass 

logged of 62.851 (Mg ha-1) and a unit change in NDVI results in a change of -0.005 

(Mg ha-1) of above-ground biomass logged as soon as the two explanatory variables 

are independent. The 95% confidence interval for the slope of the regression line 

(50.375 and 75.326 for the density of the logging roads) and (-0.008 and -0.002 for 

NDVI) also implies that with 95% certainty, this study is able to confirm that the 

slope of the regression line of the multiple linear regression model falls within the 

above indicated intervals for X1 and X2 respectively.  

6.2.4 Predicted above-ground biomass logged using multiple linear 

regression model 

The predicted above-ground biomass logged using different combinations of the 

mean ± SD of the two explanatory variables (the density of the logging roads (km 

ha-1) and NDVI were observed to range from 2.218 - 4.668 Mg ha-1. Comparing the 

range of the values of the predicted above-ground biomass logged to the mean 

value of above-ground biomass logged calculated from field measured data (3.431 

Mg ha-1), it is observed that the predicted range is very closed to the field measured 

mean value. Also, the standard deviation (SD) of the predicted mean value was 

0.623 and the standard errors (S.E) of the predicted values ranged from 0.089 - 

0.162. These statistics also indicate a good precision of the multiple linear 
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regression model in predicting the above-ground biomass logged.  The combination 

of the mean values of the two predictor variables gave a predicted above-ground 

biomass logged value that was the same as the field measured mean value of above-

ground biomass logged. The 95% confidence interval for the predicted mean values 

and that of the predicted values were generally shorter when compared to those of 

the simple linear model. Hence, the multiple linear model is more precise than the 

simple linear regression model. 

 

The collinearity diagnostic analysis indicated that the red band reflectance showed 

collinearity with NDVI (see the correlation coefficients in appendix 3 and the VIF 

values in appendix 6). This means that the Red band reflectance is also important in 

predicting above-ground biomass logged but it was excluded from the multiple 

linear regression model because it introduced no additional information in the 

model when the NDVI values were already used. Therefore, in the absence of 

NDVI data, the red band reflectance data if available can be used in the multiple 

linear regression model for predicting above-ground biomass logged. The 

contributions of the density of the log yards, EVI, NIR, and MIR in explaining the 

variation in above-ground biomass logged were very marginal and so were not very 

useful for predicting above-ground biomass logged.   

 

Finally, both models were observed to meet the assumptions of linearity (see 

figures 14 & 15 above) and the normal distribution of the regression residuals (see 

appendix 5) of linear regression modeling.   
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7 CONCLUSIONS AND RECOMMEDATIONS 

From the findings of this study the following conclusions and recommendations can 

be made: 

7.1 Conclusion 

The study used forest exploitation inventory data and field measured data of 

selective logging infrastructure to quantity above-ground biomass affected by 

selective logging operations.  The different methods used efficiently estimated 

above-ground biomass loss (forest degradation) as a result of selective logging.  

These techniques are presumably more time and cost efficient in the assessment of 

above-ground biomass loss when compared to traditional methods at the same scale 

of measurement. This means that these different techniques can be combined to 

easily assessed forest degradation (measured in this study as the loss of above-

ground biomass). 

 

The feasibility of using these methods for the assessment of above-ground biomass 

is further made possible by the increasing ease to access accurate forest exploitation 

data in Cameroon. Also, there currently exist national and international initiatives 

in Cameroon and other countries within the Congo Basin that are developing up-to-

date spatial datasets of forestry activities. For instance, the Interactive Forestry 

Atlas Projects of WRI in six countries of the Central African region contains 

datasets on logging roads within forest concessions tracked from satellite images. 

This data is updated on an annual basis and is a potential source of data for such 

analysis.  

 

Furthermore, the study has also developed two models for predicting above-ground 

biomass logged (indicator of forest degradation). Both models gave a good 

precision in predicting above-ground biomass logged. These are very useful tools in 

assessing above-ground biomass logged, considering that the data required for the 

implementation of these models is now easily obtainable through the different 

sources as indicated above. 
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The information generated in this study is useful for forest management decision 

making. For instance, the analysis of the impact of the development of selective 

logging infrastructure on above-ground biomass is useful information that can 

support decisions on RIL strategies. Also, knowledge of the intensity of selective 

logging in Cameroon is equally important for making management decisions which 

have both economic as well ecological significances.  For instance, an 

understanding of trees remaining in the forest after selective logging can serve as a 

basis for a decision on promoting certain tree species in the international market as 

strategy to reduce pressure on well-known and commonly harvested tree species. 

 

Also, the different above-ground biomass calculations can be further used to 

determine the quantity of carbon that is released into the atmosphere by each 

activity through the conversion factor below: 

 

Carbon released = above-ground biomass affected x 0.5……......................... [5] 

 

7.2 RECOMMENDATIONS 

This study is able to make two sets of recommendations: recommendations on the 

future improvement of the study and recommendations on other related study lines 

that are still necessary in supporting the quest for new and easy ways to assess 

above-ground biomass in degraded African tropical rainforest ecosystems.  

 

Concerning the improvement of the current work, the original plan of this study 

envisaged the use of Landsat7 and other medium resolution images for the 

correlation and regression analysis. However, as a result of the poor quality of 

Landsat images (cloud cover, effect of stripes) and the fact that this is only a 

student project with insufficient funding, all the desired datasets could not be 

afforded. Therefore, any future studies which is able to use higher resolution data 

than MODIS products is likely to improve, the remote sensing component of this 

study. 

 

Also, the data for the lengths of the skid trails used was calculated based on 

conversion factors in published literature. Therefore, there is need to repeat the 
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analysis with actual field measured skid trails values. Based on the experience of 

this study, the best time to measure the skid trails in the field is during active 

logging so as to benefit from the facilitation of the forest teams to access the skid 

trails. Another reason is that the skid trails tend to close up faster than the logging 

roads and their accessibility sometimes after the logging operations (from about 6 

months after the logging operations has ended) could pose a real problem. 

 

In addition, it is probably more logical to correlate the above-ground biomass 

logged and effectively stored in each log yard with the area of the log yard as it was 

observed that all the sample plots did not necessary have log yards, indicating that 

the trees harvested in such plots were transported and stored in log yards elsewhere 

and this wood flow needs to be monitored for any assessment of the area of the log 

yards against above-ground biomass logged. 

 

With regards to complimentary studies, this study recommends that, additional 

investigations to add to the existing knowledge on damage caused in logging gaps 

and linear regression models using similar variables be tested for this kind of 

damage as well. Finally, sustainable management strategies in the African tropical 

rainforest such as RIL should pay particular attention to the optimization of the 

construction of tertiary logging roads since from this study; it was observed that the 

greatest impact on above-ground biomass was caused by this road category.  
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9 APPENDIX 

Appendix 1: List of species specific wood densities used in the study 

N° Species Specific wood 
density (KgM3)   

1 Alstonia boonei 0.380 
2 Amphimas pterocarpoides 0.580* 
3 Aningeria altissima 0.420 
4 Autrenella congolensis 0.680 
5 Ceiba pentandra 0.280 
6 Celtis zenkerii 0.600 
7 Coeloncaryon preussi 0.560 
8 Detarium macrocarpum 0.720 
9 Entandrophragma angolense 0.450 

10 Entandrophragma candollei 0.590 
11 Entandrophragma cylindricum 0.550 
12 Entandrophragma utile 0.530 
13 Eribroma oblongum 0.600 
14 Erythrophleum ivorense 0.720 
15 Gambeya africana 0.769 
16 Guarea sp 0.480 
17 Guibourtia ehié 0.670 
18 Khaya sp 0.440 
19 Mansonia altissima 0.580* 
20 Milicia excelsa 0.580* 
21 Nesogordonia papaverifera 0.660 
22 Ongokea gore 0.881 
23 Pericopsis eleta 0.580* 
24 Piptadeniastrum africanum 0.689 
25 Pterocarpus soyauxii 0.610 
26 Pycnanthus angolensis 0.481 
27 Swartzia fistuloides 0.820 
28 Terminalia superba 0.520 
29 Triplochyton scleroxylon 0.320 
 * Mean wood density for moist tropical rainforest (Brown 1997) 
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Appendix 2: Allometric equations for tree species from Henry et al. (2011) 

N° Species Equation (m3) Calibration range of X Location Reference Year 

1 Alstonia boonei Y =ρ*exp(-1.499+2.148ln(D)+0.207(ln(D))2-0.0281(ln(D))3)   General Equation Chave et al. 2005 

2 Amphimas pterocarpoides Y=ρ*exp(-1.499+2.148ln(D)+0.207(ln(D))2-0.0281(ln(D))3)   General Equation Chave et al. 2005 

3 Aningeria altissima log10Y= LOG10(0.0006245)+2.114×LOG10(X) D1.3 in cm (1, 200)** Ghana Wong , J.L.G. 1990 

4 Autrenella congolensis Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

5 Ceiba pentandra Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

6 Celtis zenkerii AGB =ρ*exp(-1.499+2.148ln(D)+0.207(ln(D))2-0.0281(ln(D))3)   General Equation Chave et al. 2005 

7 Coeloncaryon preussi AGB =ρ*exp(-1.499+2.148ln(D)+0.207(ln(D))2-0.0281(ln(D))3)   General Equation Chave et al. 2005 

8 Detarium macrocarpum Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

9 Entandrophragma angolense Y= 10.82×(X^1.89) D1.3 in m (0.01, 0.8)* Gabon Bilé Allogho, J. 1999 

10 Entandrophragma candollei Y= 10.82×(X^1.89) D1.3 in m (0.01, 0.8)* Gabon Bilé Allogho, J. 1999 

11 
Entandrophragma 
cylindricum Y= 2.003–1.094×X+11.89×(X^2) D1.3 in m (0.8, 1.69)* Api-Cameroon 

Palla, F., Louppe, 
D., et al 2002 

12 Entandrophragma utile Y= 10.82×(X^1.89) D1.3 in m (0.01, 0.8)* Gabon Bilé Allogho, J. 1999 

13 Eribroma oblongum Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

14 Erythrophleum ivorensis Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.6)* Gabon Bilé Allogho, J. 1999 

15 Gambeya africana Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

16 Guarea sp Y= 9.72×(X^(2.46)) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

17 Guibourtia ehié Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

18 Khaya sp Y= 10.82×(X^(1.89)) D1.3 in m (0.01, 0.8)* Gabon Bilé Allogho, J. 1999 

19 Mansonia altissima Y= –0.524+13.127×(X^2)  D1.3 in m (0.2, 1.69)** Ivory Coast Akindele, S.O. 2005 

20 Milicia excelsa Y= 1.05+10.08×(X^2) D1.3 in m (0.01, 0.7)* Gabon Bilé Allogho, J. 1999 

21 Nesogordonia papaverifera Y= 0.04+9.07×(X^2) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

22 Ongokea gore Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

23 Pericopsis elata log10Y= LOG10(0.0006426)+2.058×LOG10(X)  D1.3 in cm (1, 200)** Ghana Wong , J.L.G. 1990 

24 Piptadeniastrum africanum Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

25 Pterocarpus soyauxii Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.7)* Gabon Bilé Allogho, J. 1999 
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26 Pycnanthus angolensis Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.6)* Gabon Bilé Allogho, J. 1999 

27 Swartzia fistuloides Y= 9.72×(X^2.46) D1.3 in m (0.01, 0.4)* Gabon Bilé Allogho, J. 1999 

28 Terminalia superba Y= 0.19+10.46×(X^2) D1.3 in m (0.01, 1.69)** Gabon Groulez, et al. 1984 

29 Triplochyton scleroxylon Y= 0.000209×(X^(2.3528)) D1.3 in cm (1, 80)* Cameroon 
Palla, F., Louppe, 
D., et al 2002 

General equation = General biomass Equation for Moist tropical rainforest 

Original references of allometric equations  presented in the above table referenced by Henry et al. (2011) 

 
Akindele, S.O. 2005. Volume functions for commontimber species of Nigeria’s forests – a technical document. ITTO, UBC, Federal University 

of Technology, Vancouver, Canada. Akure, Nigeria 

Bilé Allogho, J. 1999. Etude sur les ressources forestières du Gabon. FAO, Rome 

Groulez, J. & Wood, P.J. 1984. Terminalia superba, monographie. Centre technique forestier tropical, Commonwealth Forestry Institute. 

Palla, F. & Louppe, D. 2002a. Obeché. CIRAD, Montpellier 

Palla, F. Louppe, D. & Forni, E. 2002c. Sapelli. CIRAD 

Wong, J.L.G. 1990. Forest resources management project temporary sample plot inventory computer program manual. ODA (UK). 
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Appendix 3: Correlation matrix from the correlation analysis of the studied variables 

 
Correlations 

 AGBloggedha logyardensityhaha Rdskidtraildensitykmh

a 

EVI_diff MIR_diff NDVI_diff NIR_diff RED_diff 

AGBloggedha 

Pearson Correlation 1 .398** .813** -.023 .242 -.333* .077 .290* 

Sig. (2-tailed) 
 

.005 .000 .876 .094 .020 .598 .043 

N 49 49 49 49 49 49 49 49 

logyardensityhaha 

Pearson Correlation .398** 1 .466** -.084 .384** -.288* .206 .346* 

Sig. (2-tailed) .005 
 

.001 .566 .006 .045 .155 .015 

N 49 49 49 49 49 49 49 49 

Rdskidtraildensitykmha 

Pearson Correlation .813** .466** 1 -.045 .136 -.100 .009 .078 

Sig. (2-tailed) .000 .001 
 

.757 .352 .492 .949 .596 

N 49 49 49 49 49 49 49 49 

EVI_diff 

Pearson Correlation -.023 -.084 -.045 1 -.132 .242 .555** -.141 

Sig. (2-tailed) .876 .566 .757 
 

.367 .094 .000 .335 

N 49 49 49 49 49 49 49 49 

MIR_diff 

Pearson Correlation .242 .384** .136 -.132 1 -.776** .666** .879** 

Sig. (2-tailed) .094 .006 .352 .367 
 

.000 .000 .000 

N 49 49 49 49 49 49 49 49 

NDVI_diff 

Pearson Correlation -.333* -.288* -.100 .242 -.776** 1 -.349* -.966** 

Sig. (2-tailed) .020 .045 .492 .094 .000 
 

.014 .000 

N 49 49 49 49 49 49 49 49 

NIR_diff 
Pearson Correlation .077 .206 .009 .555** .666** -.349* 1 .532** 

Sig. (2-tailed) .598 .155 .949 .000 .000 .014 
 

.000 
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N 49 49 49 49 49 49 49 49 

RED_diff 

Pearson Correlation .290* .346* .078 -.141 .879** -.966** .532** 1 

Sig. (2-tailed) .043 .015 .596 .335 .000 .000 .000 
 

N 49 49 49 49 49 49 49 49 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Appendix 4: Output from data exploration for possible abnormalities in the 

datasets 

 

 
 

Before data editing After data editing 
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Appendix 5: Histogram & P-P plots for checking the normality of regression residuals  
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Appendix 6: A list of independent variables excluded by the stepwise regression  

Excluded Variablesa 

Model Beta In t Sig. Partial 

Correlation 

Collinearity Statistics 

Tolerance VIF Minimum 

Tolerance 

1 

logyardensityhaha .025b .261 .796 .038 .783 1.277 .783 

EVI_diff .014b .164 .871 .024 .998 1.002 .998 

MIR_diff .134b 1.591 .118 .228 .982 1.019 .982 

NDVI_diff -.254b -3.264 .002 -.434 .990 1.010 .990 

NIR_diff .070b .818 .418 .120 1.000 1.000 1.000 

RED_diff .229b 2.887 .006 .392 .994 1.006 .994 

2 

logyardensityhaha -.057c -.624 .536 -.093 .725 1.380 .725 

EVI_diff .079c .989 .328 .146 .941 1.063 .934 

MIR_diff -.156c -1.276 .209 -.187 .395 2.532 .395 

NIR_diff -.021c -.254 .801 -.038 .878 1.139 .869 

RED_diff -.234c -.781 .439 -.116 .067 14.915 .067 
 

 

 
 

 
 

 

 

 

 

 


